Some Contrasts and Considerations
of an Approach to Modelling

Martin S. Feather
USC/Information Sciences Institute
48676 Admiralty Way
Marina del Rey, California 90291

1. Introduction

We consider the approach to modelling that our group

has been developing, first to highlight differences
between this and the approaches of other researchers,
second to raise some issues related to understandability
of models that we feel are common to modelling in general.
The principles underlying our approach may be found in

Balzer's position paper to this workshop.

2. Differences

Undorlying many of the diffarences Is our decision as to
what should and should not be part of the model. We
suppress both implementation and interface details from
model of the functional behaviour (intending that these
detalls be separately stated). This allows us to

concentrate on Issues fundamental to the functional

behaviour of the task. Our models are operational in
nature, hence may be executed in order to exhibit the
described behaviour. We forgo the abilily to have our

models automatically compiled into efficient

implementations in order to permit use of constructs best
suited to behavioural specification. We will examine
several of these constructs and comment on the extent

and limitations of them.

This research was supported by RADC contract F30602~
79-C~-0042 and DARPA contract DAHC 15 72 C 0308.

* Tho views expressaed are those of tha author.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1980 ACM 0—89791—03l—l/80/0600—0121 $00.75

121

2.1. Information storage and retrieval

We mode! information by relations among (typed)

objects. Information retrleval may follow these relations
in any direction (e.g. given a 3-place relation R, and
objects A and B of the appropriate type, we may ask for
an object C which could fill the third position R(A,B,C), or
given B and C seek A, etc.). We may quantify over all
abjects of a given type (e.g. ask for all objects C which
are related to A and B in R(A,B,C), or ask {f there exists
any such object, etc.). We are limited, however, to
relations among objects (we may not have relations among
relations) and quantification over objects (so we may not
ask for all relations in which an object participates), l.e.
our language Is first order. In practice these limitations

do not seem to restrict our ability to model tasks.

2.2. Modelling of change and use of historical
reference

We model change by the creation / destruction of
objects and the insertion / deletion of relations amongst
them. Each such primitive operation causes a transition
from one state to another - thus our computation history
is a series of states. All information in any previous state
is available through "historical reference". Indeed, state
is treated as a first-class type, i.e. we may quantify over
states, Instantiate an object of type state (e.g. to ask for
a state in which ...), etc. (But some operations make no
sense applied to states, we may not destroy or change

states, since history is inviolate.)

In addition to historical reference, which is a

convenient way of extracting information about the past

without having to explicitly remember information from

state to state, we also have a limited form of “future
reference"; we may perform an action in the current
state, extract information from the resulling state, and
continue, with the information, from the state prior to

starting that action.
Non-determinism and constraints

Non-determinism enters our model through the selection
of an object (e.g., some x such that..) or through the
sequencing of operations (e.g.,, forall x in <set> do
<action> denotes én arbitrary sequencing of applications
of the action to the elements of the set). This Is
reflected in our state transitions by the possibility of a

state having multiple alternative successors.

The constraints we may Impose on our model are
expressed as arbitrarily complex predicaies, which may
involve any information of the current or earlier states
(the iatter through historical reference). Any transition
which leads to a state in violation of any constraint is
anomalous. In the event of all transitions from a state
being anomalous, the transition that led into that state is
by definition also anomalous. Thus constraints serve to

"prune out" undesireable paths. This provides a

mechanism for formally specifying desired behviour

without specifying an "algorithm" for achieving it.

2.3. Limitations

We pointed out the first-order limitation in what

information may be stored within our model; another
limitation concerns the use of data-typing. First, we do
not permit user-defined parameterised types. For
convenience the language provides sets and sequences
as parameterised type constructors, but these are the
only such instances. Second, we do not follow the
abstract data type approach of associating operations
with types. This divergence from the trend of modern
programming languages is a consequence of our very
different approach to modelling. Our aim is to model as
directly as possible the structure and behaviour of the
constructs are

task domain and activities, and our

designed to let us do this. In contrast, we view models
constructed by bullding up layers of abstraction from more

basic types and operations as an indirect description of

122

the structure and behaviour through implementation in

terms of the baslc types and operations.

3. Issues relevant to understanding

We have constructed models of two reai-world
examples using our specification language: a "Source
Data Maintenance" package to support batch-commands
from a user maintaining source code arranged into a
hierarchical structure of units, files, libraries and projects;
and part of the ARPA-net Host-Imp protocol, Involving
issues of paralielism, modelling hardware failure, etc. We
base our observations upon our experience with these

(and consideration of other) models.

We have found that readers of our models often find it
hard to understand them - even other members of our

This iIs
somewhat disturbing since we had hoped that by making it

group who have equal fluency in the language.

easier for the specifier to more directly model the task
domalin, reading and understanding of such models would
become easier too. Although we could no doubt derive
some improvements by making cosmetic changes to our
language (the development of which has been biased so
far towards easing the task of the constructor rather than
the :reader), we feel there are fundamental issues in
presenting models which deserve more attention, and
which apply to all approaches to modelling, not just our
own. Wae consider why models are hard to understand,

and what might be done to alleviate this difficulty.

3.1, Sources of difficulty in model understanding

For any sizable and complex task, a model of the same
Is likely to be sizable and complex. The reader, faced
with the task of comprehending the whole of a large
model, typically finds no assistance to help him bulld up
gradually to an understanding of the whole.

The design decisions taken by the model creator wiil be
apparent only through the form of the end product. As
find

reasoning the constuctor followed.

such, the reader will

little or no trace of the

The interactlons of the various portions of the model,
and their implications for the behaviour they describe,
may be unclear to the reader. The viewpoint of the

constructor may be different from the viewpoint of the

reader, and unsuitable to answer the questions the user

might have.

3.2. Aids to understanding
We suggest the following tools might be of assistance

in understanding models:

A symbolic interpreter would let the reader study the
behaviour of the model on classes of (rather than
particular) exampies. Since our approach to modelling is
based upon an operational model of the world, we can
build such an interpreter for our language. For this and
other tools it is important that the user be able to guide
the application of the tool and its presentation of results.
For an interpreter we might want to involve the user at
non-deterministic choice points, so that he can direct the
interpreter along the paths which most interest him. The
user should have means for stating which portions of the
behaviour he wishes to observe during the interpretation,
and be able to examine the resulting state.

Analysis tools could be used to point out possible
Interactions between diffarent portions of the model. The
more sophisticated the tool the better able it would be to

identify

true sources of interactions and discard

123

non-arising ones. One particularly appropriate method for
such tools to present results might be to generate small
examples of interactive behaviour.

A tool to produce a switch of viewpoint (e.g. following
the progress of an object through the model rather than
observing individual processes) would free the user from

the need to adopt the constructor's viewpoint.

These tools act upon the finished model to assist
understanding. In addition, we might seek to make the
development of the model a manipulable object in its own
right. If the model is developed in layers of increasing
complexity, the reader may later follow through the
development in order to attain

incrementally an

understanding of the whole. Again, a tool would be of
assistance, this time to help the constructor perform his
This

possibility complements the earlier suggestions - the user

development of the modet and record his prograess.

might apply the other tools to investigate the behaviour of
an intermediate layer of the model. Finally, the existence
of the development as an object may assist maintenance
of the model - if some change was to be made, the
change could be made at the appropriate layer of model,

and development adjusted from that point.

